Powering The Internet Of Things

Powering The Internet Of Things

Powering The Internet Of Things

The Internet of Things is designed on the premise that sensors can be embedded in everyday object to help monitor and track them. The scope of this is huge – for example, the sensors could monitor and track everything from the structural integrity of bridges and buildings to the health of your heart. Unfortunately, one of the biggest stumbling blocks to widespread adoption at the moment is finding a way to cheaply and easily power these devices and thus enable them to connect to the internet.

Luckily, engineers at the University of Washington have a potential solution. They have designed a new system which uses radio frequency signals as a power source and reuses existing WiFi infrastructure to provide the connectivity. The technology is called WiFi Backscatter and is believed to be the first of its kind.

Building on previous research showed how low-powered devices could run without batteries or cords by obtaining their power from radio, TV and wireless signals, the new design goes further by connecting the individual devices to the internet. Previously it wasn’t possible, the difficulty in providing WiFi connectivity was that traditional, low-power WiFi consumes significantly more power than can be gained from the wireless signals. This has been solved by developing a ultra-low power tag prototype which has the required antenna and circuitry to talk to laptops and smartphones.

“If Internet of Things devices are going to take off, we must provide connectivity to the potentially billions of battery-free devices that will be embedded in everyday objects”, said Shyam Gollakota, one of University of Washington’s Professor in the Computer Science and Engineering department. “We now have the ability to enable WiFi connectivity for devices while consuming orders of magnitude less power than what WiFi typically requires”.

The tags on the new ultra low-power prototype work by scanning for WiFi signals that are moving between the router and the laptop or smartphone. Data is encoded by either reflecting or not reflecting the WiFi router signal – thus slightly changing the signal itself. It means that WiFi enabled devices would detect the miniscule changes and thus receive data from the tag.

“You might think, how could this possibly work when you have a low-power device making such a tiny change in the wireless signal? But the point is, if you’re looking for specific patterns, you can find it among all the other Wi-Fi reflections in an environment”, said Joshua Smith, another University of Washington professor who works in the same department as Gollakota.

The technology has currently communicated with a WiFi device at a rate of 1 kilobit per second with two metres between the devices, though the range will soon be expanded to twenty metres. Patents have been filed.

By Daniel Price

Follow Me!

Daniel Price

Daniel is a Manchester-born UK native who has abandoned cold and wet Northern Europe and currently lives on the Caribbean coast of Mexico. A former Financial Consultant, he now balances his time between writing articles for several industry-leading tech (CloudTweaks.com & MakeUseOf.com), sports, and travel sites and looking after his three dogs.
Follow Me!

One Response to Powering The Internet Of Things

  1. Great article. The Internet of Things is truly going to revolutionize life as we know it. Who would have thought devices could be powered by wireless signals?


CloudTweaks Sponsors - Find out more!

Popular

Top Viral Impact

Cloud Infographic – Monetizing Internet Of Things

Cloud Infographic – Monetizing Internet Of Things

Cloud Infographic – Monetizing Internet Of Things There are many interesting ways in which companies are looking to connect devices to the cloud. From the vehicles to kitchen appliances the internet of things is already a $1.9 trillion dollar market based on research estimates from IDC. Included is a fascinating infographic provided by AriaSystems which shows us some…

2014 Future Of Cloud Computing Survey Results

2014 Future Of Cloud Computing Survey Results

Engine Yard Joins North Bridge Venture Partners, Gigaom Research and Industry Collaborators to Unveil 2014 Future of Cloud Computing Survey Results SAN FRANCISCO, CA–(Marketwired – Jun 25, 2014) – Engine Yard, the leading cloud application management platform, today announced its role as a collaborator in releasing the results of the fourth annual Future of Cloud Computing Survey,…

Cloud Infographic – Big Data Survey: What Are The Trends?

Cloud Infographic – Big Data Survey: What Are The Trends?

Jaspersoft Big Data Survey Shows Rise in Commitment to Projects and Decline in Confusion Nearly 1,600 Jaspersoft Community Members Participate in Second Jaspersoft Big Data Survey San Francisco, February 4, 2014 – Jaspersoft, the Intelligence Inside applications and business processes, today shared results from its Big Data Survey. Nearly 1,600 Jaspersoft community members responded to…

The Future Of Work: What Cloud Technology Has Allowed Us To Do Better

The Future Of Work: What Cloud Technology Has Allowed Us To Do Better

The Future of Work: What Cloud Technology Has Allowed Us to Do Better The cloud has made our working lives easier, with everything from virtually unlimited email storage to access-from-anywhere enterprise resource planning (ERP) systems. It’s no wonder the 2013 cloud computing research IDG survey revealed at least 84 percent of the companies surveyed run at…


Established in 2009, CloudTweaks is recognized as one of the leading influencers in cloud computing, big data and internet of things (IoT) information. Our goal is to continue to build our growing information portal, by providing the best in-depth articles, interviews, event listings, whitepapers, infographics and much more.

You can help continue to support our community by social sharing, sponsoring, partnering or contributing to this great educational resource.

Contact

CloudTweaks Media
Phone: 1 (212) 763-0021
contact@cloudtweaks.com

Join our newsletter