NoSQL databases, MapReduce & Hadoop

Big Data – Productivity, Innovation And Competitiveness

NoSQL databases, MapReduce & Hadoop

Big data refers to datasets that are so large, diverse, and fast-changing which need advanced and unique storage, management, analysis, and visualization technologies.  According to McKinsey, Big Data is “the next frontier for innovation, competition and productivity”.  The right use of Big Data can increase productivity, innovation, and competitiveness for organizations. Inhi Suh, IBM vice president of big data, stated that businesses should place a greater emphasis on analytics projects. In fact, big data analytic is an important step to extract knowledge from a huge amount of data. It is a competitive advantage for most companies.

NoSQL databases, MapReduce & Hadoop

According to Gupta and Jyoti (2014), “Big data analytics is the process of analysing big data to find hidden patterns, unknown correlations and other useful information that can be extracted to make better decisions”.Agrawal et al. (2011) described the multiple phases in the big data analysis which are Data Acquisition and Recording; Information Extraction and Cleaning; Data Integration, Aggregation, and Representation; Data Modeling and Analysis; and Interpretation. All these phases are crucial and high accuracy in each of these steps will lead to effective big data analytic. In this way, the promised benefits of big data will be achieved.

A wide variety of analytical techniques and technologies can be used to extract useful information from large collections of data. Such information helps companies to gain valuable insights to predict customer behaviour, effective marketing, increased revenue and so on. Maltby (2011) reviewed several literatures on big data analytics and introduced several techniques, such as Machine learning, Data mining, Text analytics, Crowdsourcing, Cluster analysis, Time series analysis, Network analysis, Predictive modelling, Association rule, and Regression, that can be used to extract information from a data set and transform it into an understandable structure for further use . In fact, using data analytic techniques depends on the research objectives/ questions, nature of the data, and the available technologies.

Visualization products

In addition, there are a wide variety of software products and technologies to facilitate big data analytics. EDWs, Visualization products, NoSQL databases, MapReduce & Hadoop, and cloud computing are examples of the more common technologies used in big data analytics. All these techniques and technologies cannot be used for every project or organization. Needs and potential of each organization should be evaluated in order to choosing the appropriate tools for big data analytic.

Studies indicates that data analysis is considerably more challenging than simply locating, identifying, understanding, and citing data. Many researchers believe that the most of the challenges and concerns with data is related to volume and velocity. However, a recent survey conducted by the creator of open source computational database management system on more than 100 data scientist indicates that variety of data sources (not just data volume & velocity) is the main challenge in analysing data. Furthermore, results of this study indicated that Hadoop cannot be a viable solution for some cases that require complex analytics.  It would seem that data analysis is a clear bottleneck in many applications. In line with this idea, Agrawal and his colleagues (2011) reported common challenges in big data analysis: Heterogeneity and Incompleteness of data, Scale, Timeliness, Privacy, error-handling, lack of structure, and visualization. It is recommended that the highlighted challenges should be addressed for effective data analysis.

By Mojgan Afshari

Lauren Brunson

The Growing Need to Consolidate Multi-Tenant Environments

Consolidate Multi-Tenant Environments Over the past four months, countless businesses and universities have scrambled to the cloud to enable their employees and students to work remotely during the global coronavirus pandemic. Managed service providers (MSPs) ...
Gary Bernstein

7 Ways To Ensure That Your Software Can Keep Up With Your Data

Keys To Managing Your Data Data has become a lot more important in our modern society. It is why many people consider data to be the new oil. It is as valuable as oil, and ...
Gary Bernstein

Mapping Crime Though Big Data – Leading Sources

Online Crime Maps Online crime maps is a set of tools used by law enforcement agencies to map and make an analysis of crimes and incidents in order to find possible patterns in them. Online ...
Thomas Franklin

Future of Stock Markets : Raising Capital Through ICO is 10x cheaper and 20x easier

Future of Stock Markets: Raising Capital Through ICO How blockchain will replace the stock markets as we know them today. Welcome to the future. It’s a beautiful Monday morning of 5th June, 2023. Jane wants ...
Deepak Jayagopal

Leveraging DevOps Infrastructure as Code to Improve Cloud Provisioning Time by 65%

Improving Cloud Provisioning Time Infrastructure provisioning used to be a highly manual process for Digital Service Providers (DSPs). Infrastructure engineers would rack and stack the servers and will manually configure them. Then they will install ...
Move bot migration

MoveBot – New Data Transfer Platform

Data Transfer Platform Branded post by Movebot As cloud computing and storage continue to provide enhanced ROI to organizations, businesses are storing their data on the cloud– instead of on-premise servers. Storage migration is an ...