tommy

Data Catalog: Enabling Self-Service Analytics

Enabling Self-Service Analytics

A Chinese proverb says, “The best time to plant a tree was 20 years ago; the second-best time is now”.  Let’s assume you’re already up and running with a big data Hadoop platform for advanced analytics use-cases.  Perhaps you’ve ingested multi-structured data from disparate sources and are performing product delivery/development for proofs-of-concept.  In order to organize the data associated with your products, make it easily searchable/findable, and rapidly provision to your end-users, a Data Catalog is necessary.  As with the tree, the best time to implement a Data Catalog (DC) is during early planning stages; however, the second-best time is today.

There are various associated use-cases relating to ‘why’ a DC is necessary:

  • Fill in the gaps: You’re deep in the midst of new failure analysis and find that you’re missing 60% of maintenance start dates, due an error in the archive job; what other data sets might help fill in that missing data?
  • Explore what’s possible: You’re on the hunt for data keys that will let you hop-scotch from application to application; with a multi-step cross-reference, can you finally unlock those measurement logs from a one-time sensor study?
  • Test out hypotheses: Your team talks in anecdotes and examples; can you prove that there IS a seasonal correlation between new customers and off-season items?
  • Streamline or rationalize: You’re starting an application rationalization and want to trace data lineage from the system of record; how many different versions of “the truth” are there?
  • Learn from the traffic: You’re responsible for enterprise data governance, so you want the metadata about the DC; who is looking for what data, and how can you better meet their needs?
  • Find fresher data: The team’s monitoring report runs off of quarterly inventory losses that are allocated monthly to different organizations; can you track down the raw, weekly data so that the team isn’t surprised at month end?

These use-cases can be boiled down to three considerations: what data do I have (and therefore not have) in the lake, how can I provision data effectively to enable self-service analytics, and how do I classify data to be most useful.

What’s in the Lake?

A DC should provide similar functionality and user experience as a brick & mortar super-store.  Imagine your consumers needing to find proppant levels for the past 6 months for an unconventional well.  Similar to the sign-posts hanging from the ceiling in your local Costco, you should lead them to the right aisle; for example, Upstream → Production → Unconventional → Region → Well → Proppant → Time-Frame.  Spending some time brainstorming structure and multiple-paths to discovery will benefit end-users and increase their retention in utilizing the service.

Provisioning Best Practices

Once those users have found the right data, how do you get it in their hands?  First, a good relationship with your data source stewards is important; they need to feel secure to quickly allow data consumption across many requests, have line-of-sight on lineage for tracking derived data through transformation, and should help with tagging the data coming from their respective system(s).

Second, there should be a quick turnaround between request and provisioning; otherwise, end-users’ ability to leverage data for business decisions is limited.  As such, the DC should have inherent processes for automating provisioning when/where possible.  DevOps processes/culture can go a long way toward meeting the needs of the organization in regards to rapid provisioning.  Change managers are also essential for training those stewards on the tools.

Classification

Upon ingestion into the lake, metadata needs to be gathered and the data should be tagged – ideally by a representative (data custodian), with significant business knowledge who can differentiate and assign tags effectively.  As demonstrated in Figure 1, not all data is created equal, and various levels of rigor can be used for tagging, based on its intended use.

Figure 1: Different “classes” of data have different tagging requirements, based on intended use

If you’re up and running with your Big Data engine, perhaps you’re comfortable in piecemeal-procuring data for pilots and the like.  That can work during inception and early stages, but eventually, you will have new ideas coming through the pike and to-be product owners approaching you to understand what’s in the lake already and what they’ll need to source.  Being able to provide that information, as well as provision/classify it effectively, will buy credibility and can facilitate data gravity (the idea that the more data in a lake, the more data it will attract), which can be a key differentiator in the Enterprise Hub game.

By Tommy Ogden, Senior Manager at Enaxis Consulting

Cloud Syndicate

The ‘Cloud Syndicate’ is a mix of short term guest contributors, curated resources and syndication partners covering a variety of interesting technology related topics.

Contact us for syndication details on how to connect your technology article or news feed to our syndication network.

Long term thought leadership contributors will not show up under the ‘Cloud Syndicate’ section as they will receive their own custom profile on CloudTweaks.

CONTRIBUTORS

Cyber Security Tips For Digital Collaboration

Cyber Security Tips For Digital Collaboration

Cyber Security Tips October is National Cyber Security Awareness Month – a joint effort by the Department of Homeland Security ...
Countdown to GDPR: Preparing for Global Data Privacy Reform

Countdown to GDPR: Preparing for Global Data Privacy Reform

Preparing for Global Data Privacy Reform Multinational businesses who aren’t up to speed on the regulatory requirements of the European ...
Bryan Doerr

Cyber-Threats and the Need for Secure Industrial Control Systems

Secure Industrial Control Systems (ICS) Industrial Control Systems (ICS) tend to be “out of sight, out of mind.” These systems ...
10 Ways The Enterprise Can Prevent Data Leaks In The Cloud

10 Ways The Enterprise Can Prevent Data Leaks In The Cloud

Prevent Data Leaks In The Cloud More companies are turning to the cloud for storage. In fact, over 60 percent ...
Chris Gerva

Why Containers Can’t Solve All Your Problems In The Cloud

Containers and the cloud Docker and other container services are appealing for a good reason - they are lightweight and ...
What Futuristic Transportation Will Look Like In Your Lifetime

What Futuristic Transportation Will Look Like In Your Lifetime

Futuristic Transportation Being stuck in traffic or late for work because of a hold up on the dreaded commute could ...
Safeguarding Data Before Disaster Strikes

Safeguarding Data Before Disaster Strikes

Safeguarding Data  Online data backup is one of the best methods for businesses of all sizes to replicate their data ...
Why ‘Data Hoarding’ Increases Cybersecurity Risk

Why ‘Data Hoarding’ Increases Cybersecurity Risk

Data Hoarding The proliferation of data and constant growth of content saved on premise, in cloud storage, or a non-integrated ...
Cloud Services Are Vulnerable Without End-To-End Encryption

Cloud Services Are Vulnerable Without End-To-End Encryption

End-To-End Encryption The growth of cloud services has been one of the most disruptive phenomena of the Internet era.  However, ...
What You Need To Know About Choosing A Cloud Service Provider

What You Need To Know About Choosing A Cloud Service Provider

Selecting The Right Cloud Services Provider How to find the right partner for cloud adoption on an enterprise scale The ...

NEWS

U.S. IT Sector Employment Expands by 8,100 Jobs in November, CompTIA Analysis Reveals

U.S. IT Sector Employment Expands by 8,100 Jobs in November, CompTIA Analysis Reveals

DOWNERS GROVE, Ill., Dec. 8, 2017 /PRNewswire-USNewswire/ -- New hiring in computer and electronics manufacturing and technology services and custom ...
Hackers shut down infrastructure safety system in attack: FireEye

Hackers shut down infrastructure safety system in attack: FireEye

Hackers shut down infrastructure safety system (Reuters) - Hackers likely working for a nation-state recently penetrated the safety system of ...
email as a service

Google Data Analysis, Artificial Intelligence and Predicting Vaccine Scares

Social media trends can predict tipping points in vaccine scares Analyzing trends on Twitter and Google can help predict vaccine ...