martin-ryan-hi-rez

Write Once, Run Anywhere: The IoT Machine Learning Shift From Proprietary Technology To Data

The IoT Machine Learning Shift

While early artificial intelligence (AI) programs were a one-trick pony, typically only able to excel at one task, today it’s about becoming a jack of all trades. Or at least, that’s the intention. The goal is to write one program that can solve multi-variant problems without the need to be rewritten when conditions change—write once, run anywhere. Digital heavyweights—notably Amazon, Google, IBM, and Microsoft—are now open sourcing their machine learning (ML) libraries in pursuit of that goal as competitive pressures shift focus from proprietary technologies to proprietary data for differentiation.

Machine learning is the study of algorithms that learn from examples and experience, rather than relying on hard-coded rules that do not always adapt well to real-world environments. ABI Research forecasts ML-based IoT analytics revenues will grow from $2 billion in 2016 to more than $19 billion in 2021, with more than 90% of 2021 revenue to be attributed to more advanced analytics phases. Yet while ML is an intuitive and organic approach to what was once a very rudimentary and primal way of analyzing data, it is worth noting that the ML/AI model creation process itself can be a very complex.

Data

The techniques used to develop machine learning algorithms fall under two umbrellas:

  • How they learn: based on the type of input data provided to the algorithm (supervised learning, unsupervised learning, reinforcement learning, and semi-supervised learning)

  • How they work: based on type of operation, task, or problem performed on I/O data (classification, regression, clustering, anomaly detection, and recommendation engines)

Once the basic principles are established, a classifier can be trained to automate the creation of rules for a model. The challenge lies in learning and implementing the complex algorithms required to build these ML models, which can be costly, difficult, and time-consuming.

Engaging the open-source community introduces an order of magnitude to the development and integration of machine learning technologies without the need to expose proprietary data, a trend which Amazon, Google, IBM, and Microsoft swiftly pioneered.

At more than $1 trillion, these four companies have a combined market cap that dwarfs the annual gross domestic product of more than 90% of countries in the world. Each also open sourced its own deep learning library in the past 12 to 18 months: Amazon’s Deep Scalable Sparse Tensor Network Engine (DSSTNE; pronounced “destiny”), Google’s TensorFlow, IBM’s SystemML, and Microsoft’s Computational Network Toolkit (CNTK). And others are quickly following suit, including Baidu, Facebook, and OpenAI.

But this is just the beginning. To take the most advanced ML models used in IoT to the next level (artificial intelligence), modeling, and neural network toolsets (e.g., syntactic parsers) must improve. Open sourcing such toolsets is again a viable option, and Google is taking the lead by open sourcing its neural network framework, Google’s SyntaxNet, driving the next evolution in IoT from advanced analytics to smart, autonomous machines.

But should others continue to jump on this bandwagon and attempt to shift away from proprietary technology and toward proprietary data? Not all companies own the kind of data that Google collects through Android or Search, or that IBM picked up with its acquisition of The Weather Company’s B2B, mobile, and cloud-based web-properties. Fortunately, a proprietary data strategy is not the panacea for competitive advantage in data and analytics. As more devices get connected, technology will play an increasingly important role for balancing insight generation from previously untapped datasets, and the capacity to derive value from the highly variable, high-volume data that comes with these new endpoints—at a cloud scale, with zero manual tuning.

Collaboration 

collaborate-email

Collaborative economics is an important component in the analytics product and service strategies of these four leading digital companies all seeking to build a greater presence in IoT and more broadly the convergence of the digital and the physical. But “collaboration” should be placed in context. Once one company open-sourced its ML libraries, other companies were forced to release theirs as well. Millions of developers are far more powerful than a few thousand in-house employees. As well, open sourcing offers these companies tremendous benefits because they can use the new tools to enhance their own operations. For example, Baidu’s Paddle ML software is being used in 30 different online and offline Baidu businesses ranging from health to financial services.

And there are other areas for these companies to invest resources that go beyond the analytics toolsets. Identity management services, data exchange services and data chain of custody are three key areas that will be critical in the growth of IoT and the digital/physical convergence. Pursuing ownership or proprietary access to important data has its appeal. But the new opportunities in the IoT landscape will rely on great technology and the scale these companies possess for a connected world that will in the decades to come reach hundreds of billions of endpoints.

martin-ryan-hi-rezBy  Ryan Martin and Dan Shey

Ryan Martin, Senior Analyst at ABI Research, covers new and emerging mobile technologies, including wearable tech, connected cars, big data analytics, and the Internet of Things (IoT) / Internet of Everything (IoE). 

Ryan holds degrees in economics and political science, with an additional concentration in global studies, from the University of Vermont and an M.B.A. from the University of New Hampshire.

CloudTweaks

Established in 2009, CloudTweaks is recognized as one of the leading authorities in cloud connected technology information, resources and thought leadership services.

Contact us for a list of our leading programs.

Mitigating Cyberattacks: The Prevention and Handling

Mitigating Cyberattacks: The Prevention and Handling

Mitigating Cyberattacks New tools and technologies help companies in their drive to improve performance, cut costs and grow their businesses ...
Is Machine Learning The Future? Making Your Data Scientists Obsolete

Is Machine Learning The Future? Making Your Data Scientists Obsolete

Is Machine Learning The Future? In a recent study, almost all the businesses surveyed stated that big data analytics were ...
ERP Ain’t Got the Same Soul, I Like that Old Time Rock ‘n’ Roll

ERP Ain’t Got the Same Soul, I Like that Old Time Rock ‘n’ Roll

Designing Enterprise Software around People Looking back, business owners talked to their customers and employees in person or by phone ...
Do Not Rely On Passwords To Protect Your Online Information

Do Not Rely On Passwords To Protect Your Online Information

Do Not Rely On Passwords Simple passwords are no longer safe to use online. John Barco, vice president of Global ...
Mitigating the Downtime Risks of Virtualization

Mitigating the Downtime Risks of Virtualization

Mitigating the Downtime Risks Nearly every IT professional dreads unplanned downtime. Depending on which systems are hit, it can mean ...
Apcela

Industrial IoT will reshape network requirements

Industrial IoT The hype around IoT may have been surpassed this year by breathless coverage of topics such as artificial ...
Technology Certification Courses

Top Five Technology Certification Courses To Choose From In 2018

Technology Certification Courses Gartner predicts that the global public cloud services market is projected to grow by 55 percent in the ...
Numeraire Cryptocurrency

Digital Cashless Society: Dystopian Nightmares or Utopian Dreams

Digital Cashless Society A truly digital cashless society was long the realm of dystopian nightmares (or utopian dreams depending on ...
Battle of the Clouds: Multi-Instance vs. Multi-Tenant Architecture

Battle of the Clouds: Multi-Instance vs. Multi-Tenant Architecture

Multi-Instance vs. Multi-Tenant Architecture  The cloud is part of everything we do. It’s always there backing up our data, pictures, ...
Work In The Cloud Era: Are We Ready For Virtual Teams?

Work In The Cloud Era: Are We Ready For Virtual Teams?

Getting Ready For Virtual Teams Technological developments are ushering in a new era of work. Cloud computing has changed not ...